DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - III , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2018-19

Sub: MATHEMATICS, Course - C7

Full Marks: 10
Answer any five questions:

Time: $\mathbf{3 0} \mathrm{m}$.
$(2 \times 5=10)$

1. Define the significant digits. Determine the number of significant digits of the following number $x=0.00265970023$
2. Explain the Rounding - off Error. Round - off the following number up to 4 places of decimal

$$
x=0.00275698
$$

3. Determine the number of correct significant digits in the given number x given that the relative error $E_{r}=0.2 \times 10^{-2}$ where $x=0.4785$
4. Define the operators Δ and ∇. Prove that $\Delta . \nabla=\Delta-\nabla$.
5. Find a polynomial $f(x)$ which satisfies the following table -

\boldsymbol{x}	0	1	2	3	4	5
$\boldsymbol{f}(\boldsymbol{x})$	0	5	34	111	260	505

and hence find the value $f(1.5)$.
6. State and verify the "Fundamental Theorem of Difference Calculus".
7. Define the Shift operator. Prove that $\Delta=E-1$.
8. Prove that $\Delta^{n} x^{(n)}=n!h^{n}, h$ is the constant step length.

DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - III , $2^{\text {nd }}$ INTERNAL ASSESSMENT, 2018-19

 Sub: MATHEMATICS, Paper- C7Full Marks: 10
Time: 30 m .
Answer any five of the following questions:

$$
(5 \times 2=10)
$$

1. Find a polynomial of least degree which attains the prescribed values at the given points -

$\boldsymbol{x}:$	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x}):$	6	0	2	0	6

2. Define the $1^{\text {st }}$ order forward difference operator (Δ) and the shift operator (E).

Establish the relation between them. Hence or otherwise prove that $\left(\frac{\Delta^{2}}{E}\right) x^{3}=6 x$.
03. Find $f(1.02)$ given that -

$x:$	1.00	1.10	1.20	1.30
$f(x):$	0.8415	0.8912	0.9320	0.9636

4. Prove that the $3^{\text {rd }}$ order divided difference of a polynomial of degree 3 is constant.
5. Evaluate the $4^{\text {th }}$ order divided difference for equispaced set of arguments.
6. Evaluate $\int_{0}^{5} \frac{d x}{1+x}$, by "Trapezoidal Rule" taking the constant step length as 1 .
7. "Bisection Method" for determination of the root of a non - linear or transcendental equation is a "Root Bracketing Method". Explain.
8. When a system of linear algebraic n equations is said to be "Diagonally Dominant"?
B.Sc. (Honours) Sem. - III, $1^{\text {st }}$ INTERNAL ASSESSMENT, 2019-20

Sub: MATHEMATICS, Paper- C 7 T
Full Marks: 10
Time: 30 m .
Answer any five of the following questions:

1. Define the significant digits. Determine the number of significant digits of the following number

$$
x=0.00265970023
$$

2. Explain the Rounding - off Error. Round - off the following number up to 4 places of decimal

$$
x=0.00275698
$$

3. Determine the relative error in computation of $x-y$ for $x=9.05$ and $y=6.56$ have absolute errors $\Delta x=0.001$ and $\Delta y=0.003$ respectively.
4. Define the operators Δ and ∇. Prove that $\Delta . \nabla=\Delta-\nabla$.
5. Estimate the missing term in the following table -

\boldsymbol{x}	0	1	2	3	4	5
$\boldsymbol{f}(\boldsymbol{x})$	1	3	9	$?$	81	243

6. State and verify the "Fundamental Theorem of Difference Calculus". Also derive the relation between the $1^{\text {st }}$ order difference operator Δ and $D=\frac{d}{d x}$ of differential calculus.
7. Define the Shift operator. Prove that $\nabla=1-E^{-1}$.
8. Prove that $\Delta^{n} x^{(n)}=n!h^{n}, h$ is the constant step length.
9. Explain the convergence criterion of the Method of Fixed Point Iteration for numerical approximation of the solution of the non - linear or transcendental equation.

DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE
 B.Sc.(H) Sem. - III , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2019-20
 Sub: MATHEMATICS, Course - C7

Full Marks: 10
Time: $\mathbf{3 0} \mathbf{m}$.
Answer any five questions:
$(2 \times 5=10)$

1. Find a polynomial of least degree which attains the prescribed values at the given points -

x	-2	-1	0	1	2
$f(x)$	6	0	2	0	6

2. Define the $1^{\text {st }}$ order forward difference operator (Δ) and the sift operator (E).Establish the relation between them. Hence or otherwise prove that $\left(\frac{\Delta^{2}}{E}\right) x^{3}=6 x$.
3. Find $f(1.02)$ given that-

$x:$	1.00	1.10	1.20	1.30
$f(x)$	0.8415	0.8912	0.9320	0.9636

3. Prove that the $3^{r d}$ order divided difference of a polynomial of degree 3 is constant.
4. Evaluate the $4^{\text {th }}$ order divided difference for equispaced set of arguments.
5. Evaluate $\int_{0}^{5} \frac{d x}{1+x}$, by Trapezoidal Rule taking the constant step length as 1.
6. "Bisection Method" for determination of the root of a non-linear or transcendental equation is a "Root Bracketing Method". Explain.
7. When a system of linear algebraic n equation is said to be "Diagonally Dominant"?
8. Prove that $\Delta^{n} x^{(n)}=n!h^{n}, h$ is the constant step length.
