DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – III , INTERNAL ASSESSMENT-1st , 2018-19 Sub: MATHEMATICS, Course – C7

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Define the significant digits. Determine the number of significant digits of the following number x = 0.00265970023
- 2. Explain the **Rounding off Error**. Round off the following number up to 4 places of decimal x = 0.00275698
- 3. Determine the number of correct significant digits in the given number x given that the relative error $E_r = 0.2 \times 10^{-2}$ where x = 0.4785
- 4. Define the operators \triangle and ∇ . Prove that \triangle . $\nabla = \triangle \nabla$.
- 5. Find a polynomial f(x) which satisfies the following table –

x	0	1	2	3	4	5
f(x)	0	5	34	111	260	505

and hence find the value f(1.5).

- 6. State and verify the "Fundamental Theorem of Difference Calculus".
- 7. Define the Shift operator. Prove that $\Delta = E 1$.
- 8. Prove that $\Delta^n x^{(n)} = n! h^n$, *h* is the constant step length.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - III , 2nd INTERNAL ASSESSMENT, 2018-19 Sub: MATHEMATICS, Paper- C7

Full Marks: 10

Time: 30 m.

 $(5 \times 2 = 10)$

Answer any five of the following questions:

01. Find a polynomial of least degree which attains the prescribed values at the given points –

<i>x</i> :	-2	-1	0	1	2
f(x):	6	0	2	0	6

- **02.** Define the 1st order forward difference operator (Δ) and the shift operator (*E*). Establish the relation between them. Hence or otherwise prove that $\left(\frac{\Delta^2}{E}\right)x^3 = 6x$.
- **03.** Find f(1.02) given that –

<i>x</i> :	1.00	1.10	1.20	1.30
f(x):	0.8415	0.8912	0.9320	0.9636

04. Prove that the 3rd order divided difference of a polynomial of degree 3 is constant.

05. Evaluate the 4th order divided difference for equispaced set of arguments.

- **06.** Evaluate $\int_0^5 \frac{dx}{1+x}$, by "Trapezoidal Rule" taking the constant step length as 1.
- **07.** "**Bisection Method**" for determination of the root of a *non linear or transcendental equation* is a "**Root Bracketing Method**". Explain.
- **08.** When a system of linear algebraic *n* equations is said to be "**Diagonally Dominant**"?

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE

B.Sc. (Honours) Sem. - III, 1st INTERNAL ASSESSMENT, 2019-20 Sub: MATHEMATICS, Paper- C 7 T

Full Marks: 10

Time: 30 m.

 $(5 \times 2 = 10)$

Answer any five of the following questions:

01. Define the significant digits. Determine the number of significant digits of the following number

$$x = 0.00265970023$$

02. Explain the **Rounding – off Error**. Round – off the following number up to 4 places of decimal

$$x = 0.00275698$$

- **03.** Determine the relative error in computation of x y for x = 9.05 and y = 6.56 have absolute errors $\Delta x = 0.001$ and $\Delta y = 0.003$ respectively.
- **04.** Define the operators \triangle and ∇ . Prove that \triangle . $\nabla = \triangle \nabla$.
- 05. Estimate the missing term in the following table –

x	0	1	2	3	4	5
f(x)	1	3	9	?	81	243

- **06.** State and verify the "**Fundamental Theorem of Difference Calculus**". Also derive the relation between the 1st order difference operator Δ and $D = \frac{d}{dx}$ of differential calculus.
- **07.** Define the Shift operator. Prove that $\nabla = 1 E^{-1}$.
- **08.** Prove that $\Delta^n x^{(n)} = n! h^n$, *h* is the constant step length.
- **09.** Explain the convergence criterion of the **Method of Fixed Point Iteration** for numerical approximation of the solution of the non linear or transcendental equation.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc.(H) Sem. – III , INTERNAL ASSESSMENT-2nd , 2019-20 Sub: MATHEMATICS, Course – C7

Full Marks: 10 Time: 30 m. Answer any five questions:

 $(2 \times 5 = 10)$

1. Find a polynomial of least degree which attains the prescribed values at the given points -

x	-2	-1	0	1	2
f(x)	6	0	2	0	6

2. Define the 1^{*st*} order forward difference operator (Δ) and the sift operator (E).Establish the relation between them. Hence or otherwise prove that $(\frac{\Delta^2}{E})x^3 = 6x$.

3. Find f(1.02) given that-

<i>x</i> :	1.00	1.10	1.20	1.30
f(x)	0.8415	0.8912	0.9320	0.9636

- 3. Prove that the 3^{rd} order divided difference of a polynomial of degree 3 is constant.
- 4. Evaluate the 4^{th} order divided difference for equispaced set of arguments.
- 5. Evaluate $\int_0^5 \frac{dx}{1+x}$, by Trapezoidal Rule taking the constant step length as 1.
- 6. "Bisection **Method**" for determination of the root of a non-linear or transcendental equation is a "**Root Bracketing Method**". Explain.
- 7. When a system of linear algebraic n equation is said to be "Diagonally Dominant"?
- 8. Prove that $\Delta^n x^{(n)} = n! h^n$, *h* is the constant step length.